虽然在实际的生产环境中,Spark都是部署在Linux环境中。但是对于Windows用户或者对Linux系统并不熟悉的用户来说,了解在Windows环境下的安装部署对Spark的入门学习还是有帮助的。
进入官网下载地址https://spark.apache.org/downloads.html,这里选择Pre-built for Apache Hadoop 2.7 and later
版本。
下载完成解压后,进入Spark所在目录的bin目录,通过spark-shell
命令进入Spark环境。可以按照官网的quick-start文档进行操作。
在通过spark-shell
命令进入Spark环境的过程中,命令行中可能会抛出若干异常,这里给出相应的解决方案。
- 异常一:java.io.IOException: Could not locate executable null\bin\winutils.exe in the Ha
doop binaries.
这个问题是因为Windows中没有安装Hadoop环境,可以通过https://github.com/steveloughran/winutils/blob/master/hadoop-2.7.1/bin/winutils.exe下载winutils.exe文件来构建一个虚拟的Hadoop环境,并配置系统变量HADOOP_HOME
。
注意:winutils.exe
文件必须放在HADOOP_HOME
路径的bin目录下。例如:配置HADOOP_HOME
系统变量为D:\Tools\hadoop
,则winutils.exe
文件放在D:\Tools\hadoop\bin
目录下。
- 异常二:java.lang.IllegalArgumentException: Error while instantiating ‘org.apache.spark.
sql.hive.HiveSessionStateBuilder’
这个问题是/tmp/hive
(如果Spark安装在D盘,则为D:\tmp\hive
)目录权限导致的。可使用winutils.exe
文件在Windows环境操作Linux命令来解决,具体过程如下:
D:\Tools\hadoop>winutils.exe ls d:\tmp\hive
d--------- 1 lenovo-PC\rui lenovo-PC\None 0 Nov 26 2018 d:\tmp\hive
D:\Tools\hadoop>winutils.exe chmod 777 d:\tmp\hive
D:\Tools\hadoop>winutils.exe ls d:\tmp\hive
drwxrwxrwx 1 lenovo-PC\rui lenovo-PC\None 0 Nov 26 2018 d:\tmp\hive
修复异常后,再运行spark-shell
命令,可看到正常启动如下:
D:\spark-2.2.0-bin-hadoop2.7>.\bin\spark-shell
Spark context Web UI available at http://:4040
Spark context available as 'sc' (master = local[*], app id = local-
).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.2.0
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_91)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
Spark shell在初始化后会在当前命令行窗口创建名为“sc”的context和名为“spark”的session。可以从session中获得DataFrameReader,它可以把文本文件读取为一个数据集,其中每一行都作为数据集的一项读取。以下Scala命令创建名为“textFile”的数据集,然后对数据集运行count()、first()和filter()操作。
scala> val textFile = spark.read.textFile("README.md")
textFile: org.apache.spark.sql.Dataset[String] = [value: string]
scala> textFile.count()
res0: Long = 103
scala> textFile.first()
res1: String = # Apache Spark
scala> val linesWithSpark = textFile.filter(line => line.contains("Spark"))
linesWithSpark: org.apache.spark.sql.Dataset[String] = [value: string]
scala> textFile.filter(line => line.contains("Spark")).count()
res2: Long = 20
map()、reduce()、collect()相关操作:
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)
res3: Int = 22
scala> val wordCounts = textFile.flatMap(line => line.split(" ")).groupByKey(identity).count()
wordCounts: org.apache.spark.sql.Dataset[(String, Long)] = [value: string, count
(1): bigint]
scala> wordCounts.collect()
res4: Array[(String, Long)] = Array((online,1), (graphs,1), (["Parallel,1), (["Building,1), (thread,1), (documentation,3), (command,,2), (abbreviated,1), (overview,1), (rich,1), (set,2), (-DskipTests,1), (name,1), (page](http://spark.apache.org/documentation.html).,1),(["Specifying,1), (stream,1), (run:,1), (not,1), (programs,2), (tests,2), (./dev/run-tests,1), (will,1), ([run,1), (particular,2), (option,1), (Alternatively,,1), (by,1), (must,1), (using,5), (you,4), (MLlib,1), (DataFrames,,1), (variable,1), (Note,1), (core,1), (more,1), (protocols,1), (guidance,2), (shell:,2), (can,7), (site,,1), (systems.,1), (Maven,1), ([building, 1), (configure,1), (for,12), (README,1), (Interactive,2), (how,3), ([Configuration,1), (Hive,2), (system,1), (provides,1), (Hadoop-supported,1), (pre-built,1...
参考文档:https://dzone.com/articles/working-on-apache-spark-on-windows